
Max–Planck–Institut für biologische Kybernetik
Max Planck Institute for Biological Cybernetics

Technical Report No. TR-162

Sparse Multiscale Gaussian
Process Regression

Christian Walder, Kwang In Kim,
Bernhard Schölkopf

August 2007

Department Schölkopf, email: first.last@tuebingen.mpg.de

Sparse Multiscale Gaussian Process Regression

Christian Walder, Kwang In Kim, Bernhard Schölkopf

Abstract. Most existing sparse Gaussian process (g.p.) models seek computational advantages by basing their
computations on a set of m basis functions that are the covariance function of the g.p. with one of its two inputs
fixed. We generalise this for the case of Gaussian covariance function, by basing our computations on m Gaus-
sian basis functions with arbitrary diagonal covariance matrices (or length scales). For a fixed number of basis
functions and any given criteria, this additional flexibility permits approximations no worse and typically better
than was previously possible. Although we focus on g.p. regression, the central idea is applicable to all kernel
based algorithms, such as the support vector machine. We perform gradient based optimisation of the marginal
likelihood, which costs O(m2n) time where n is the number of data points, and compare the method to various
other sparse g.p. methods. Our approach outperforms the other methods, particularly for the case of very few basis
functions, i.e. a very high sparsity ratio.

1 Introduction
The Gaussian process (g.p.) is a popular non-parametric model for supervised learning problems. Although g.p.’s
have been shown to perform well on a wide range of tasks, their usefulness is severely limited by the O(n3) time
and O(n2) storage requirements where n is the number of data points. A large amount of work has been done
to alleviate this problem, either by approximating the posterior distribution, or constructing degenerate covariance
functions for which the exact posterior is less expensive to evaluate [1, 2, 3, 4, 5] — for a unifying overview see
[6]. The majority of such methods achieve an O(m2n) time complexity for training where m � n is the number
of points on which the computations are based.

Due to the non parametric nature of the g.p. there are potentially as many parameters to estimate as there are
training points. An exception is the case where the covariance function has finite rank, such as the linear covariance
function on Rd × Rd given by k(x,x′) = x>x′, which has rank d. In this case the g.p. collapses to a parametric
method and it is possible to derive algorithms with O(d2n) time complexity by basing the computations on d basis
functions.

For non-degenerate covariance functions k(·, ·), the various existing sparse g.p. algorithms are quite different to
one another, but all have in common that they base their computations on m basis functions of the form k(zi, ·).
Typically the set Z = {z1,z2, . . . ,zm} is taken to be a subset of the training set [1, 2, 4]. For example Seeger
et al. [4] employ a highly efficient approximate information gain criteria to incrementally select points from the
training set in a greedy manner.

More recently Snelson and Ghahramani [5] have shown that further improvements in the quality of the model for
a given m can be made — especially for small m — by removing the restriction that Z be a subset of the training
set. For this they introduced a new sparse g.p. model which has the advantage of being closer to the full g.p., and
also of being more amenable to gradient based optimisation of the marginal likelihood with respect to the set Z . A
further advantage of their continuous optimisation of Z is that the hyper parameters of the model can be optimised
at the same time — this is more difficult when Z is taken to be a subset of the training set, since choosing such a
subset is a non-differentiable combinatoric problem.

In this paper we take a logical step forward in the development of sparse g.p. algorithms. We also base our
computations on a finite set of basis functions, but remove the restriction that the basis functions be of the form
k(zi, ·) where k is the covariance of the g.p. This requires computing integrals involving the basis and covariance
functions, and so cannot always be done in closed form. Fortunately however, closed form expressions can be
attained for arguably the most useful scenario, namely that of Gaussian covariance function (with arbitrary diagonal
covariance matrix) along with Gaussian basis functions (again each with their own arbitrary diagonal covariance
matrix).

The central idea is that under some mild restrictions we can compute the likelihood — under the g.p. model with
Gaussian covariance — of arbitrary Gaussian mixtures. Although our analysis is new, there is some precedent for

1

it in the literature. In particular, Walder et al. [7] employ a similar idea, but from a reproducing kernel Hilbert space
(r.k.h.s.) rather than a g.p. perspective, and for a different basis and regulariser (namely B3-spline and thin-plate,
respectively). Also related is the work of Franz et al. [8], who perform their analysis from a g.p. perspective with
arbitrary basis and covariance function, but with the important difference that they do not take infinite limits.

The work has a direct analogy in r.k.h.s. theory. Indeed the central idea can be applied to any kernel machine,
but in the present paper we focus on the g.p. framework. The main reason for this is that it allows us to build on
Snelson and Ghahramani’s sparse g.p. model [5], which has already been shown to be amenable to gradient based
optimisation of the marginal likelihood.

The paper is structured as follows. Section 2 provides an introduction to g.p. regression models. In Section
3 we derive the likelihood of arbitrary Gaussian mixtures under the g.p. model with Gaussian covariance, and
clarify the link to r.k.h.s.’s. In Section 4 we discuss and motivate the precise probabilistic model which we use to
take advantage of our theoretical results. Experimental results and conclusions are presented in Sections 5 and 6,
respectively.

2 Gaussian Process Regression
Given an independent and identically distributed (i.i.d.) sample

S = {(x1, y1) , . . . , (xn, yn)} ⊂ Rd × R

drawn from an unknown distribution, the goal is to estimate P (y|x). We introduce a latent variable u ∈ R, and
make the assumption that P (y|u, x) = P (y|u). Hence we can think of y as a noisy realisation of u, which we
model by P (y|u) = N (y|u, σ2

n) where σn is a hyper parameter.1

The relationship x → u is a random process u(·), namely a zero mean g.p. with covariance function k :
Rd × Rd → R. Typically k will be defined in terms of further hyper parameters. We shall denote such a g.p. as
G(k), which is defined by the fact that its joint evaluation at a finite number of input points is a zero mean Gaussian
random variable with covariance

Ef∼G(k) [f(x)f(z)] = k(x,z).

One can show that conditioned upon the hyper parameters the posterior P (u|S), where2 [u]i = u(xi), is given by

P (u|S) ∝ P (u)N (y|u, σ2
nI) (1)

∝ N
(
u|Kxx(Kxx + σ2

nI)−1y, σ2
nKxx(Kxx + σ2

nI)−1
)
,

where [Kxx]ij = k(xi,xj). Note that for simplicity we have, like many authors, neglected to notate the con-
ditioning upon the hyper parameters, as we shall do throughout the paper. Now, it can furthermore be shown
that the latent function u∗ = u(x∗) at an arbitrary test point x∗ is distributed according to P (u∗|x∗,S) =∫

P (u∗|u)P (u|S) du = N (u∗|µ∗, σ2
∗), where

µ∗ = y>(Kxx + σ2
nI)−1k∗, (2)

σ2
∗ = k(x∗,x∗)− k>∗ (Kxx + σ2

nI)−1k∗, (3)

and we have defined [k∗]i = k(x∗,xi).
In a Bayesian setting, one places priors over the hyper parameters and computes the hyper posterior, but this

typically necessitates computationally expensive numerical integration techniques. Alternatively one may fix the
hyper parameters to those obtained by maximising some criteria such as the marginal likelihood conditioned upon
them, P (y|X) = N (y|0,Ky), where X = (x1, . . . ,xn) and Kyy = Kxx + σ2

nI is the covariance matrix for y.
This can be computed using the result that

log (P (y|X)) ∝ −y>K−1
yy y − log |Kyy|+ c, (4)

where c is a term independent of the hyper parameters. Even when one neglects the cost of choosing the hyper pa-
rameters however, it typically costs O(n) and O(n2) time to evaluate the posterior mean and variance respectively,
after an initial setup cost of O(n3).

1We adopt the common convention of writing N (x|µ, σ) for the probability density at x of the Gaussian random variable
with mean µ and variance σ.

2Square brackets with subscripts denote elements of matrices and vectors, and a colon subscript denotes an entire row or
column of a matrix.

2

3 Sparse Multiscale Gaussian Process Regression

Let u be drawn from G(k). As we mentioned previously, this means that the vector of joint evaluations at an
arbitrary ordered set of points X = (x1, . . . ,xn) is a random variable, call it uX , distributed according to

PuX (u) ∝ N (u|0,Kxx) . (5)

Hence the probability density function (p.d.f.) of this random variable is

fuX (
∑m
i=1ciui) =

∣∣2πK−1
xx

∣∣− 1
2 exp

(
− 1

2

∑m
i,j=1 cicju

>
i K−1

xx uj

)
,

where |·| denotes the matrix determinant. Note that this is simply the p.d.f. of uX where we have set the argument
to be

∑m
i=1 ciui, for some ci ∈ R. We have done this because later we will wish to determine the likelihood of

a function expressed as a summation of fixed basis functions. To this end we now consider an infinite limit of the
above case. Taking the limit n →∞ of uniformly distributed points3 xi leads to the following p.d.f. for G(k),

fG(k)(
∑m
i=1ciui) =

∣∣2πk−1
∣∣− 1

2 exp

(
− 1

2

m∑
i,j=1

cicj

∫ ∫
ui(x)uj(y)k−1(x,y) dx dy︸ ︷︷ ︸

,Ψk(ui,uj)

)
. (6)

We will discuss the factor of
∣∣2πk−1

∣∣− 1
2 shortly. Note that in the previous case of finite n, if we let u = Kxxα

and assume that Kxx is invertible, then α = K−1
xx u. Following this finite analogy, by k−1 we now intend a sloppy

notation for the function which, for u =
∫

α(x)k(x, ·) dx, satisfies
∫

u(x)k−1(x, ·) dx = α(·). Hence if we
define

Mk : α 7→ Mkα =
∫

α(x)k(x, ·) dx,

then k−1 is by definition the Green’s function [9] of Mk, as it satisfies∫ (
Mkα

)
(x)k−1(x, ·) dx = α(·). (7)

Let us now consider now the covariance function k(x,y) = cg(x,y,σ), where c > 0, σ > 0 ∈ Rd and g is a
normalised Gaussian on Rd × Rd with diagonal covariance matrix, that is4

g(x,y,σ) , |2πdiag (σ)|−
1
2 exp

(
−1

2
(x− y)> diag (σ)−1 (x− y)

)
. (8)

If we assume furthermore that our function is an arbitrary mixture of such Gaussians, so that

ui(x) = g(x,vi,σi), (9)

then the well known integral (for the convolution of two Gaussians)∫
g(x,vi,σi)g(x,vj ,σj) dx = g(vi,vj ,σi + σj) (10)

leads to (
1
c
Mcg(·,·,σ)g(·,vi,σi − σ)

)
(x) = g(x,vi,σi) = ui(x). (11)

3Although any non-vanishing distribution leads to the same result.
4We use diag in a sloppy fashion — for a ∈ Rn, diag(a) ∈ Rn×n is a diagonal matrix satisfying [diag(a)]ii = [a]i. But

for A ∈ Rn×n, diag(A) ∈ Rn is a column vector with [diag(A)]i = [A]ii

3

Hence we can derive the closed form expression

Ψk(ui, uj)
(6,9,11)

=
∫ ∫

g(x,vi,σi)
(

1
c
Mcg(·,·,σ)g(·,vj ,σj − σ)

)
(y)k−1(x,y) dx dy

(7)
=

1
c

∫
g(x,vi,σi)g(x,vj ,σj − σ) dx

(10)
=

1
c

g(vi,vj ,σi + σj − σ).

For clarity we have noted above each equals sign the number of the equation which implies the corresponding
logical step. The following expression summarises the main idea of the present section

PG(0,cg(·,·,σ))

(m∑
i=1

cig(·,vi,σi)
)
∝ exp

(
− 1

2

m∑
i,j=1

1
c
cicjg(vi,vj ,σi + σj − σ)

)
. (12)

We give only an unnormalised form by neglecting the factor
∣∣2πk−1

∣∣− 1
2 in (6). The neglected factor is equal

to the inverse of the integral of the right hand side of the above expression with respect to all functions∑m
i=1 cig(·,vi,σi). We need not concern ourselves with choosing a measure with respect to which this integral is

finite, due to the fact that, since we will be working only with ratios of the above likelihood (i.e. for maximum a
posteriori (m.a.p.) estimation and marginal likelihood maximisation), we need only the unnormalised form. Note
that this peculiarity is not particular to our proposed sparse approximation to the g.p., but is a property of g.p.’s in
general.

Let us now make a few remarks regarding the expression (12).

1. If σ1 = σ2 = · · · = σn = σ and we reparameterise ci = cc′i then it simplifies to (5).

2. Let c = 1 and h(x) = exp
(
− 1

2x>diag (σ1) x
)
, an unnormalised Gaussian. Using (8) and (12) we can derive

the log-likelihood of h under the g.p. prior,

log
(
PG(0,g(·,·,σ))

(
h(·)

))
∝ −

√
|diag (σ1)|

|diag (2σ1 − σ)|
. (13)

Simple analysis of this expression shows that the most likely such function h is that with σ1 = σ. From this
extremal point, as any component of σ1 increases, the log likelihood of h decreases without bound. Similarly
decreasing any component of σ1 also decreases the log likelihood, and as any component of σ1 approaches
half the value of the corresponding component of σ, then the log likelihood decreases without bound. To be
more precise, we have for all j = 1, 2, . . . , d that

lim
[σ1]j→(1

2 [σ]j)
+

log
(
PG(0,g(·,·,σ))

(
h(·)

))
= −∞.

An interesting consequence of the second point is that, roughly speaking, it is not possible to recover a Gaussian
function using a g.p. with Gaussian covariance, if the covariance function is more than twice as broad as the
function to be recovered. Although this may at first appear to contradict proven consistency results for the Gaussian
covariance function (for example [10]), this is not the case. On the contrary, such results hold only for compact
domains, and our analysis is for Rd.

Before proceeding, note that (12) has a direct analogy in the theory of r.k.h.s.’s, as made clear by the following
lemma. The lemma follows from (12) and the well understood relationship between every g.p. and the correspond-
ing r.k.h.s. of functions.

Lemma 3.1. Let H be the r.k.h.s. with reproducing kernel g(·, ·,σ). If the conditions σi > 1
2σ and σj > 1

2σ are
satisfied component-wise, then

〈g(·,vi,σi), g(·,vj ,σj)〉H = g(vi,vj ,σi + σj − σ). (14)

If either condition is not satisfied, then the corresponding function on the left hand side is not in H.

4

Naturally this can also be proven directly, but doing so for the general case is more involved (see Appendices
A and B). However, by assuming that the conditions σi > σ and σj > σ are satisfied component-wise, then it
is straightforward to attain the main result. The basic idea is as follows. Using (10) we substitute g(·,vp,σp) =∫

g(·,xp,σ)g(xp,vp,σp − σ) dxp for p = i, j into the l.h.s. of (14). By linearity we can write the two integrals
outside the inner product. Next we use the r.k.h.s. reproducing property — the fact that 〈f(·), g(·,x,σ)〉H =
f(x),∀f ∈ H,x ∈ Rd — to evaluate the inner product. Using (10) we integrate to obtain the r.h.s. of (14).

4 Inference with the Sparse Model
4.1 A Simple Approach
The g.p. likelihood over the restricted function space defines a distribution over functions of the form∑m
i=1 cig(·,vi,σi) where g as given previously is deterministic and the ci are, by inspection of (12), normally

distributed according to
c ∼ N

(
0, U−1

Ψ

)
, (15)

where [UΨ]i,j = Ψk(ui, uj). Let us write U = {u1, . . . , um} (which we refer to as the basis) and refer to the
random process thus defined as GU (k). This new random process is equivalent to a full g.p. with covariance
function of rank at most m given by

Ef∼GU (k) [f(x)f(z)] = Ec∼N(0,U−1
Ψ)

[(
u>vxc

) (
u>vzc

)>]
= u>vxU

−1
Ψ uvz, (16)

where [uvx]i = g(x,vi,σi) and [uvz]i = g(z,vi,σi).
As an aside, note that if we choose as the basis U = {g(·,x,σ), g(·,z,σ)}, then it is easy to verify using (16)

that Ef∼GU (0,g(·,·,σ)) [f(x)f(z)] = Ef∼G(k) [f(x)f(z)]. This is analogous to a special case of the representer
theorem from the theory of r.k.h.s.’s, and agrees with the interpretation that (15) is such that GU (k) approximates
G(k) well in some sense, for the given basis U .

Returning to the main thread, the new posterior can be derived as it was at the end of Section 2 for the exact g.p.,
but using the new covariance function (16). Hence after some algebra we have from (2) and (3) that, conditioned
again upon the hyper parameters, the latent function u∗ = u(x∗) at an arbitrary test point is distributed according
to Pu∼GU (k)(u∗|x∗,S) = N (u∗|µ∗, σ2

∗), where

µ∗ = (Uvxy)>
(
UvxU

>
vx + σ2

nUΨ

)−1
uv∗, (17)

σ2
∗ = σ2

nu
>
v∗
(
UvxU

>
vx + σ2

nUΨ

)−1
uv∗, (18)

and we have defined [Uvx]i,j = g(xj ,vi,σi), etc. Note that these expressions can be evaluated in O(m) and
O(m2) time respectively, after an initial setup or training cost of O(m2n). This is the usual improvement over the
full g.p. attained by such sparse approximation schemes. It turns out however that by employing an idea introduced
by Snelson and Ghahramani [5], we can retain this improvement while switching to a different model that is closer
to the full g.p.

4.2 Inference with Improved Variance
A fair criticism of the previous model, evident in (17) and (18), is that the predictive variance approaches zero
far away from the basis function centres vi. It turns out that this is particularly problematic to gradient based
methods for choosing the basis (the vi and σi) by maximising the marginal likelihood [5]. An effective but still
computationally attractive way of healing the model is to switch to a different g.p. — which we denote G̃U (k) —
whose covariance function satisfies

EG̃U (k) [f(x)f(z)] = δx,zk(x,z) + (1− δx,z)u>vxU
−1
Ψ uvz, (19)

where δ is the Kronecker delta function. The process defined in this way is referred to the sparse pseudo-input
Gaussian process (s.p.g.p.)Ṅote that if x = z then the covariance is that of the original g.p. G(k), otherwise it
is that of GU (k). Unlike (16), the prior variance in this case is the same as that of the full g.p., even though
in general the covariance is not. Once again the posterior can be found as before by replacing the covariance

5

(a) spgp-full (b) vsgp-full (c) exact g.p.

Figure 1: Predictive distributions (mean curve with ± two standard deviations shaded). For the spgp-full and vsgp-full algo-
rithms, we plot the (vi, σi) ∈ R × R of the basis as crossed circles. The horizontal lines denote the resulting σ ∈ R of the
covariance function cg(·, ·, σ).

function in (2) and (3) with the right hand side of (19). In this case we attain after some algebra the expression
Pu∼G̃U (k)(u∗|x∗,S) = N (u∗|µ∗, σ2

∗) where

µ∗ = u>v∗Q
−1Uvx

(
Λ + σ2

nI
)−1

y (20)

σ2
∗ = k(x∗,x∗)− u>v∗

(
U−1

Ψ −Q−1
)
uv∗, (21)

Λ = diag (λ), and

[λ]i = k(vi,vi)− [Uvv]
>
:,i U

−1
Ψ [Uvv]:,i

Q = UΨ + Uvx
(
Λ + σ2

nI
)−1

U>
vx.

To compute the marginal likelihood we can use (4), but it is most efficiently computed using Cholesky decompo-
sitions. The derivation of the gradients of the marginal likelihood with respect to the various parameters is long
and tedious. Our derivation, which closely follows [4], can be found in Appendix C. Note that by factorising
appropriately, all of the required gradients can be attained in O(m2n + mnd).

5 Experiments
Our main goal is to demonstrate the value of being able to vary the σi individually. Let us clarify the terminology
we use to refer to the various algorithms under comparison. Our new method is the variable sigma Gaussian
process (v.s.g.p.). The vsgp-full variant consists of optimising the marginal likelihood with respect to the m basis
centers vi ∈ Rd and length scales σi ∈ Rd of our basis functions ui = g(·,vi,σi) where g is defined in (8).
Also optimised are the following hyper parameters — the noise variance σn ∈ R of (1), and the parameters c ∈ R
and σ ∈ Rd of our original covariance function cg(·, ·,σ). The vsgp-basis variant is identical to vsgp-full except
that σn, c and σ are determined by optimising the marginal likelihood of a full g.p. trained on a subset of the
training data, and then held fixed while the σi and vi are optimised as before. Both v.s.g.p. variants use the G̃U (k)
probabilistic model of Section 4.2, where k = cg(·, ·,σ).

spgp-full and spgp-basis correspond to the work of Snelson and Ghahramani [5], and are identical to their v.s.g.p.
counterparts except that — as with all sparse g.p. methods prior to the present work — they are forced to satisfy the
constraints σi = σ, i = 1 . . .m. To initialise the marginal likelihood optimisation we take the vi to be a random
subset of the training data. The other parameters are always initialised to the same sensible starting values, which
is reasonable due to the preprocessing we employ (which is identical to that of [4]) in order to standardise the data
sets.

Figure 1 demonstrates the basic idea on a one dimensional toy problem. Using m = 4 basis functions is not
enough for spgp-full to accurately infer a posterior similar to that of the full g.p. trained on the depicted n = 200
training points. The v.s.g.p. achieves a posterior closer to that of the full g.p. by employing — in comparison to
the full g.p. — larger σi’s and a smaller σ, leading to an effective covariance function — that of G̃U (k) as given
by (16) — which better matches that of the full g.p. depicted in Figure 1 (c). In addition to merely observing the

6

similarity between Figures 1 (b) and (c), we verified this last statement directly by visualising EG̃U (k) [f(x)f(z)]
of (19) as a function of x and z, but we omit the plot due to space limitations.

Figure 2 shows our experiments which, following [4] and [5], were performed on the larger pumadyn-32nm and
kin-40k data sets5. For the optimisation of the s.p.g.p. and v.s.g.p. methods we used a standard conjugate gradient
type optimiser. Optimising the v.s.g.p. methods from a random initialisation tended to lead to inferior local optima,
so we used the s.p.g.p. to find a starting point for the optimisation. This is possible because both methods optimise
the same criteria, while the s.p.g.p. merely searches a subset of the space permitted by the v.s.g.p. framework. To
ensure a fair comparison, we optimised the s.p.g.p. for 4000 iterations, whereas for the v.s.g.p. we optimised first
the s.p.g.p. for 2000 iterations (i.e. fixing σi = σ, i = 1 . . .m), took the result as a starting point, and optimised
the v.s.g.p. for a further 2000 iterations (with the σi unconstrained).

We have also reproduced with kind permission the results of Seeger et al. [4], and hence have used exactly
the experimental methodology described therein. The results we reproduce are from the info-gain and smo-bart
methods. info-gain is their own method which is extremely cheap to train for a given set of hyper parameters. The
method uses greedy subset selection based on a criteria which can be evaluated efficiently. smo-bart is similar but
is based on a criteria which is more expensive to compute [1]. We also show the result of training a full g.p. on a
subset of the data of size 2000 and 1024 for kin-40k and pumadyn-32nm, respectively.

Neither info-gain nor smo-bart estimate the hyper-parameters, but rather fix them to the values determined by
the optimisation of marginal likelihood for the full g.p. Hence they are most directly comparable to spgp-basis
and vsgp-basis. However, spgp-full and vsgp-full correspond to the more difficult task of estimating the hyper
parameters at the same time as the basis.

For pumadyn-32nm we do not plot spgp-basis and vsgp-basis as the results are practically identical to spgp-full
and vsgp-full. This differs from [5], where local minima problems with spgp-full on the pumadyn-32nm data set
are explicitly reported. It is unclear why our experiments did not suffer in this way — possible explanations are the
choice of initial starting point, as well as the specific optimisation algorithm employed. The results of the s.p.g.p.
and v.s.g.p. methods on the pumadyn-32nm data set very similar, but both outperform the info-gain and smo-bart
approaches.

The kin-40k results are rather different. While the σi deviated little from σ on the pumadyn-32nm data
set, this was not the case for kin-40k, particularly for small m, as seen in Figure 2 (c) where we plot
1
md

∑m
i=1

∑d
j=1([σi − σ]j)

2. Our results are in agreement with those of [5] — our vsgp-full outperforms spgp-full
for small m, which in turn outperforms both info-gain and smo-bart. However for large m both spgp-full and vsgp-
full tend to over fit. This is to be expected due to the use of marginal likelihood optimisation, as the choice of basis
U is equivalent to the choice of the order of md hyper parameters for the covariance function of G̃U (k). Happily,
and somewhat surprisingly, the vsgp-full method tends not to over fit more than the spgp-full, in spite of it’s having
roughly twice as many basis parameters. Neither vsgp-basis nor spgp-basis suffered from over fitting however, and
while they both outperform info-gain and smo-bart, our vsgp-basis clearly demonstrates the advantage of our new
s.p.g.p. framework by consistently outperforming spgp-basis.

6 Conclusions

Sparse g.p. regression is an important topic which has received a lot of attention in recent years. Previous methods
have based their computations on subsets of the data or pseudo input points. To relate this to our method, this is
analogous to basing the computations on a set of basis functions of the form k(vi, ·) where k is the covariance
function and the vi are for example the pseudo input points. We have generalised this for the case of Gaussian
covariance function, by basing our computations on a set of Gaussian basis functions whose bandwidth parameters
may vary independently.

This provides a new avenue for approximations which is applicable to all kernel based algorithms, including
for example the g.p. and the support vector machine. To demonstrate the utility of this new degree of freedom,
we have constructed a sparse g.p. regression algorithm which outperforms previous methods, particularly for very
sparse solutions.

5kin-40k: 10000 training, 30000 test, 9 attributes, see www.igi.tugraz.at/aschwaig/data.html.
pumadyn-32nm: 7168 training, 1024 test, 33 attributes, see www.cs.toronto/ delve.

7

(a) kin-40k data set (b) pumadyn-32nm data set (c) Deviation of σi on kin-40k

Figure 2: Plots (a) and (b) depict the test error as a function of basis size m for the full g.p. (blue line), spgp-full (green dot),
spgp-basis (red asterisk), vsgp-full (cyan square), vsgp-basis (blue circle), info-gain (black pentagram) and smo-bart (green
diamond). Plot (c) depicts m vs. the variation in the σi (see text) for vsgp-full (green circles) and vsgp-basis (blue crosses).

References
[1] Alex J. Smola and Peter L. Bartlett. Sparse greedy gaussian process regression. In Todd K. Leen, Thomas G. Dietterich,

and Volker Tresp, editors, Advances in Neural Information Processing Systems 13, pages 619–625. MIT Press, Cambridge,
MA, 2000.

[2] Lehel Csató and Manfred Opper. Sparse on-line gaussian processes. Neural Comp., 14(3):641–668, 2002.

[3] Neil Lawrence, Matthias Seeger, and Ralf Herbrich. Fast sparse gaussian process methods: The informative vector
machine. In Suzanna Becker, Sebastian Thrun, and Klaus Obermayer, editors, Advances in Neural Information Processing
Systems 15, pages 609–616, 2002.

[4] Matthias Seeger, Chris Williams, and Neil D. Lawrence. Fast forward selection to speed up sparse gaussian process
regression. In Christopher M. Bishop and Brendan J. Frey, editors, Workshop on AI and Statistics 9. Society for Artificial
Intelligence and Statistics, 2003.

[5] Edward Snelson and Zoubin Ghahramani. Sparse gaussian processes using pseudo-inputs. In Y. Weiss, B. Schölkopf, and
J. Platt, editors, Advances in Neural Information Processing Systems 18, pages 1257–1264. MIT Press, Cambridge, MA,
2006.

[6] J. Quiñonero Candela and C. E. Rasmussen. A unifying view of sparse approximate gaussian process regression. Journal
of Machine Learning Research, 6:1935–1959, 12 2005.

[7] Christian Walder, Bernhard Schölkopf, and Olivier Chapelle. Implicit surface modelling with a globally regularised basis
of compact support. Proc. EUROGRAPHICS, 25(3):635–644, 2006.

[8] M. O. Franz and P. V. Gehler. How to choose the covariance for gaussian process regression independently of the basis.
In Proc. Gaussian Processes in Practice Workshop, Bletchley Park, UK, 2006.

[9] G. F. Roach. Green’s Functions. Cambridge University Press, Cambridge, UK, 1970.

[10] Ingo Steinwart. On the influence of the kernel on the consistency of support vector machines. Journal of Machine
Learning Research, 2:67–93, 2002.

[11] Francis R. Bach and Michael I. Jordan. Kernel independent component analysis. Technical Report UCB/CSD-01-1166,
EECS Department, University of California, Berkeley, Nov 2001.

[12] N. Aronszajn. Theory of reproducing kernels. Transactions of the American Mathematical Society, 68, 1950.

[13] C. E. Rasmussen and C. K.I. Williams. Gaussian Processes for Machine Learning. Adaptive Computation and Machine
Learning. The MIT Press, Cambridge, Massachusetts, 01 2006.

[14] Izrail S. Gradshtein and Iosif Ryzhik. Table of Integrals, Series, and Products. Academic Press, New York, corrected and
enlarged edition, 2nd printing edition, 1965, 1980.

[15] C. T. Pan. A modification to the linpack downdating algorithm. BIT Numerical Mathematics, 30(4):707–722, 1990.

8

A Proof of Lemma 3.1

We need to a) prove which (dilated) Gaussian functions lie in the r.k.h.s. of a Gaussian, and b) compute the norm of
those which do. The inner product then follows from the parallelogram identity. Note that the result corresponding
to a) is mentioned in [11] (in the proof of their Theorem 2), based on a characterisation of the r.k.h.s. in terms of
Fourier transforms — for a sketch of this simple approach see Appendix B. Presently we prove both a) and b) in a
direct manner using the following

Theorem A.1 (Aronzajn [12]). The function f belongs to the r.k.h.s.H with reproducing kernel (r.k.) k if and only
if there exists an ε > 0 such that

Rε(x,y) = k(x,y)− εf(x)f(y),

is positive definite (p.d.), in which case

‖f‖2H = inf {1/ε : Rε is p.d.} .

Let
p(x) = exp(−2ax2)

and
k(x, y) = exp(−b(x− y)2).

It turns out that we can write ([13], Chapter 4.3, Eigenfunction Analysis of Kernels)

k(x, y) =
∞∑
m=0

λmφm(x)φm(y),

where

λm =

√
2c

A

Bm

2mm!
6=
√

2a

A
Bm,

φm(x) = exp(−(c− a)x2)Hm(
√

2c x),

and

c =
√

a2 + 2ab, A = a + b + c, B = b/A.

Note that what follows the 6= for λm was given in [13], but is incorrect. The functions {φi} are orthogonal with
respect to the Lebesgue measure, with∫

R
φm(x)φn(x) dp(x) =

∫
R

exp(−2cx2)Hm(
√

2c x)Hn(
√

2c x) dx

= 1/
√

2c

∫
R

exp(−x2)Hm(x)Hn(x) dx

=
√

π

2c
2mm! δm,n.

Here we made a change of variables
∫

R f(x) dx = a
∫

R f(ax) dx, and used (7.374.1) from Gradshteyn and Ryzhik
[14], namely ∫

R
exp(−x2)Hm(x)Hn(x) dx =

√
π 2mm! δij .

Since the basis functions are not normalised, we have the following relation

s =
∞∑
m=0

ζmφm ⇒ 〈s|p|φn〉 = r2
nζn.

9

Hence can write f(x) = exp(−x2) =
∑∞
i=0 γiφi(x) where

r2
2mγ2m =

∫
R

f(x)φ2m(x) dp(x)

=
∫

R
exp(−x2) exp(−(c− a)x2)H2m(

√
2c x) exp(−2ax2) dx

= 1/
√

F

∫
R

exp(−x2)H2m

(√
2c/F x

)
dx

=
√

π

F

(2m)!
m!

(2c/F − 1)m .

where F = c + a + 1. To evaluate this integral we used (7.373.2) from [14], namely∫
R

exp(−x2)H2m(xy) dx =
√

π
(2m)!
m!

(y2 − 1)m,

from which we also have γ2m+1 = 0,∀m ∈ N0. This leads to

γ2m =
√

π

F

(2m)!
m!

(2c/F − 1)m /

(√
π

2c
22m(2m)!

)
=

√
2c

F

(2c/F − 1)m

22mm!
,

and so we have

Rε(x, y) = k(x, y)− εf(x)f(y)

=
∞∑
i=0

λiφi(x)φi(y)− ε

∞∑
j=0

γjφj(x)
∞∑
k=0

γkφk(y).

Letting g =
∑∞
p=0 ξpφp be arbitrary, to satisfy Mercer’s condition we require that I ≥ 0 where

I ,
∫ ∫

g(x)g(y)Rε(x, y) dp(x) dp(y)

=
∫ ∫ ∞∑

p=0

ξpφp(x)
∞∑
q=0

ξqφq(y)

·

 ∞∑
i=0

λiφi(x)φi(y)− ε
∞∑
j=0

γjφj(x)
∞∑
k=0

γkφk(y)

 dp(x) dp(y)

=
∞∑
p=0

ξ2
pr

4
pλp − ε

∞∑
p=0

ξpr
2
pγp

∞∑
q=0

ξqr
2
qγq.

This can be written ξ>Mξ where M = N − εp>p is an infinite dimensional diagonal matrix minus a rank one
matrix. Since λk > 0 for all k, we can use the fact that (Observation 1, [15])(

N − εpp> � 0
)
⇔
(
p>N−1p ≤ 1/ε

)
,

and hence we equivalently require

1/ε ≥
∞∑
k=0

γ2
k/λk =

b√
2b− 1

.

The above equality can be shown using (in addition to various tedious algebraic manipulations) formula (0.241.3)
from [14], namely

∑∞
m=1 pm(2m)!/(m!)2 = 1/

√
1− 4p. Note that the final sentence in Lemma 3.1 follows from

Theorem A.1 and the fact that for b ≤ 1/2 there is no ε > 0 satisfying the above inequality.
It also follows from Theorem A.1 that ‖f‖2H(k) = b/

√
2b− 1 , where we denote by H(k) the r.k.h.s. with r.k. k.

To compare this to Lemma 3.1, note that

f =
√

π g(0, ·, 1/2), and k(x, y) =
√

π

b
g(x, y, 1/(2b)).

10

Using Lemma 3.1 and 〈f, g〉H(k) = c 〈f, g〉H(ck), one can verify with a little algebra that

〈√
π g(0, ·, 1/2),

√
π g(0, ·, 1/2)

〉
H(
√

π
b g(x,y,1/(2b))

=
b√

2b− 1
.

Finally, it is straightforward to generalise the result to the Gaussian kernel on Rd, since this is merely the product
of d univariate Gaussian kernels.

B A Sketch of the Fourier Transform Based Proof of Lemma 3.1
Assuming k : R× R → R, by letting

k(x, y) = φ(x− y) =
∫

R
Φ(w) exp(−ı(x− y)w) dw,

we can verify that〈∫
R

F (w) exp(−ıxw) dw,

∫
R

G(w) exp(−ıxw) dw

〉
H(k)

=
∫

R

F (w)G(w)
Φ(w)

dw,

because the reproducing property holds, i.e.

〈f(x), k(x, y)〉H(k) =
〈∫

R
F (w) exp(−ıxw) dw,

∫
R

Φ(w) exp(−ıxw) exp(ıyw) dw

〉
H(k)

=
∫

R

F (w)Φ(w) exp(ıyw)
Φ(w)

dw

= f(y).

The result follows by substituting the known Fourier transforms for the Gaussian, and requiring a finite norm.

C Implementation Details
As we employ standard gradient based optimisation tools, we need only derive the partial derivatives of the ob-
jective function (the marginal likelihood) with respect to the various parameters. Here we provide all of the key
expressions.

Derivatives of g

Recall that

g(x,y,σ) ,
1√

(2π)d |diag (σ)|
exp

(
−1

2
(x− y)> diag (σ)−1 (x− y)

)
.

The partial derivatives are then

∂

∂ [x]i
g(x,y,σ) =

([y]i − [x]i)
[σ]i

g(x,y,σ)

∂

∂ [σ]i
g(x,y,σ) =

1
2

(
([y]i − [x]i)

2

[σ]2i
− 1

[σ]i

)
g(x,y,σ).

Marginal Likelihood
The marginal likelihood is

P (y) = N (y|0, U>
vxU

−1
Ψ Uvx + Λ + σ2

nI),

where Λ = diag(λ1, . . . , λn) and

λi = (Uxx)i,i − (Uvx)
>
i,: U

−1
Ψ (Uvx)i,: .

11

Writing the negative log marginal likelihood as φ = − log P (y), we then have

φ =
1
2
(
d log(2π) + log |U>

vxU
−1
Ψ Uvx + Λ + σ2

nI)|

+y>
(
U>
vxU

−1
Ψ Uvx + Λ + σ2

nI
)−1

y
)

where d is the dimensionality of the input space. Removing the constant term 1
2d log(2π) and defining Γ =

σ−2
n Λ + I we obtain the following new cost functional

φ =
1
2

(
log
∣∣σ2
n(Γ + σ−2

n U>
vxU

−1
Ψ Uvx)

∣∣+ σ−2
n y>

(
Γ + σ−2

n U>
vxU

−1
Ψ Uvx

)−1
y
)

.

Let Lvv be the Cholesky factorisation of Uψ such that UΨ = LvvL
>
vv , Vvx = L−1

vv Uvx, Mvv = σ2
nIvv +

VvxΓ−1V >
vx = SvvS

>
vv where Svv is the Cholesky factorisation of Mvv , and β = S−1

vv VvxΓ−1y. By the ma-
trix inversion lemma we have(

Γ + σ−1
n V >

vxVvxσ
−1
n

)−1
= Γ−1 − Γ−1V >

vxM
−1
vv VvxΓ−1

and
|Γ + σ−1

n V >
vxVvxσ

−1
n | = |Γ||σ−2

n Ivv||Mvv|.
Hence we can write

φ =
1
2
(
log |Γ|+ log |Mvv|+ (p− q) log(σ2

n) + σ−2
n

(
y>Γ−1y − β>β

))
.

Derivatives of the Marginal Likelihood
Let’s divide the cost functional into two parts φ = φ1 + φ2 where

φ1 =
1
2
(
log |Γ|+ log |Mvv|+ (p− q) log(σ2

n)
)

φ2 =
1
2
σ−2
n

(
y>Γ−1y − β>β

)
.

Then we have

d(φ1) =
1
2
(tr[Γ−1d(Γ)]) +

1
2
d(log |Mvv|) +

1
2
(p− q)σ−2

n d(σ2
n).

Let us define
Avv = σ2

nUΨ + UvxΓ−1U>
vx.

Using Mvv = L−1
vv (σ2

nUΨ + UvxΓ−1U>
vx)L

−>
vv we can show that

Mvv = L−1
vv AvvL

−>
vv

as well as
log |Mvv| = log |Avv| − log |UΨ|.

Hence we can write

d(Avv) = d(σ2
n)UΨ + σ2

nd(UΨ) + d(Uvx)Γ−1U>
vx + Uvxd(Γ−1)U>

vx + UvxΓ−1d(U>
vx),

and

d(log |Mvv|) = tr
(
A−1
vv

(
d(σ2

n)UΨ + σ2
nd(UΨ) + Uvxd(Γ−1)U>

vx+

d(Uvx)Γ−1U>
vx + UvxΓ−1d(U>

vx)
))
− tr[U−1

Ψ d(UΨ)].

If we define (LvvSvv)−>S−1
vv Vvx = A−1

vv Uvx.Bvx = (LvvSvv)−>S−1
vv VvxΓ−

1
2 = A−1

vv UvxΓ−
1
2 , then using

tr[AB] = tr[BA] = tr[A>B>] we have

d log |Mvv| = − tr[BvxΓ−
1
2 d(Γ)Γ−1U>

vx] + 2tr[BvxΓ−1d(Uvx)>]
+ tr[M−1

vv d(σ2
n)] + σ2

ntr[A−1
vv d(UΨ)]− tr[U−1

Ψ d(UΨ)]

12

Note that
V >
vxM

−1
vv Vvx = V >

vx(L
−1
vv AvvL

−>
vv)−1Vvx = U>

vxA
−1
vv Uvx.

Accordingly we can derive

d(Γ−1V >
vxM

−1
vv VvxΓ−1) = d(Γ−1)U>

vxBvxΓ−
1
2 + Γ−

1
2 B>

vxUvxd(Γ−1)

+ Γ−1d(U>
vx)BvxΓ−

1
2 + Γ−

1
2 B>

vxd(Uvx)Γ−1

− Γ−
1
2 B>

vxd(Avv)BvxΓ−
1
2 .

Recall that
β = S−1

vv VvxΓ−1y,

and define
v = (LvvSvv)−>β,

as well as
µ = Γ−

1
2 V >

vxS
−>
vv β.

Then we have
v = (LvvSvv)−>S−1

vv VvxΓ−1y = BvxΓ−
1
2 y,

and by using V >
vxS

−>
vv β = U>

vxv,
µ = Γ−

1
2 U>

vxv.

We can show that

y>d(Γ−1U>
vxA

−1
vv UvxΓ−1)y = (µ>Γ−

1
2 − 2y>Γ−1)d(Γ)Γ−

1
2 µ

+ 2(y>Γ−1 − µ>Γ−
1
2)d(Uvx)>v

− v>d(σ2
n)Γ

1
2 µ− σ2

nv
>d(UΨ)v,

and finally that

d(φ2) = −1
2
σ−2
n

(
y>Γ−1d(Γ)Γ−1y + d(y>Γ−1V >

vxM
−1
vv VvxΓ−1y)

)
.

Note that for reasons of efficiency d(Γ) should not be calculated explicitly. For example, the time complexity
of calculating d(Γ) with respect to the basis is O(m2nd). However, by noting that each occurrence of d(Γ) is
accompanied by the pre-multiplication of a vector it is possible to reduce the complexity to O(mnd) plus a single
pre-calculation cost of O(m2n).

13

